THE MULTIPLICITY FUNCTION OF A LOCAL RING

RY

JAMES HORNELL

ABSTRACT. Let A be a local ring with maximal ideal m. Let $f \in A$, and define $\mu_A(f)$ to be the multiplicity of the A-module A/Af with respect to m. Under suitable conditions $\mu_A(fg) = \mu_A(f) + \mu_A(g)$. The relationship of μ_A to reduction of A, normalization of A and a quadratic transform of A is studied. It is then shown that there are positive integers $n_1, ..., n_s$ and rank one discrete valuations $v_1, ..., v_s$ of A centered at m such that $\mu_A(f) = n_1v_1(f) + \cdots + n_sv_s(f)$ for all regular elements f of A.

Let A be a nonnull noetherian local ring with maximal ideal m. Let d be the (Krull) dimension of A, the maximal length of a chain of prime ideals of A, excluding A. Let k be the residue field A/m, and let G_mA be the associated graded ring of A with respect to m.

Let $f \in A$. If A/Af is of dimension d-1 define $\mu_A(f)$ to be $e_m(A/Af)$, the multiplicity of the A-module A/Af relative to m in dimension d-1 [6, p. V-2] or the multiplicity of the local ring A/Af ([7, p. 294], or [3, p. 75]). If A/Af is of dimension d, define $\mu_A(f)$ to be ∞ . Call $\mu_A(f)$ the multiplicity of f (at m in A).

If A is a regular local ring, μ_A is known to be the order valuation of A [3, 40.2, p. 154]. If A is entire $\mu_A(fg) = \mu_A(f) + \mu_A(g)$ (Proposition 1, §1). The order function v_A of A [7, p. 249] satisfies $v_A(f+g) \ge \min \{v_A(f), v_A(g)\}$, and (Proposition 2, §1) v_A is a valuation if and only if μ_A is a multiple of v_A .

If the ideal (0) is unmixed in A, μ_A is found to extend to the components of A (Lemma 2, §2). If A is of dimension one, μ_A is found to extend to the normalization of A (Lemma 3, §2). The extension of A to the first neighborhood ring of A (a quadratic transform of A) is found to preserve μ_A (Lemma 4, §3).

This is used to prove the theorem of §4, that there are positive integers n_1, \ldots, n_s and discrete rank one valuations v_1, \ldots, v_s of A centered at m such that for every regular element f of A

$$\mu_A(f) = n_1 v_1(f) + \cdots + n_s v_s(f).$$

Received by the editors September 19, 1974.

AMS (MOS) subject classifications (1970). Primary 13H15; Secondary 13B20, 14B05.

The valuations v_1, \ldots, v_s arise from (dimension one) normalization of the first neighborhood ring of A, and each n_i is the product of the length of a primary component of (0) in A of dimension d, the multiplicity of a d-dimensional component of the tangent cone of A at the origin, the index of a normalization and another factor arising from a nonfinite normalization of an entire local ring of dimension one.

Let p be a prime ideal of the noetherian ring A. The depth of p will denote throughout the Krull dimension of A/p.

1. Elementary properties of μ_A . For an A-module M let $l_A(M)$ denote the length of M as an A-module. If p is a prime ideal of A and if $\mathfrak U$ is an ideal of A let $\lambda_p(\mathfrak U) = l_{A_p}(A_p/A_p\mathfrak U)$.

PROPOSITION 1. Let f and g be two elements of a local ring A, and assume either that f is a regular element of A or that $\mu_A(f) = \infty$. Then

$$\mu_A(fg) = \mu_A(f) + \mu_A(g).$$

PROOF. If $\mu_A(f) = \infty$, then f and fg are contained in a prime ideal of A of depth d, and $\mu_A(fg) = \infty$.

Let f be a regular element of A and assume that $\mu_A(g)$ is finite. By [6, p. V-3], for any $h \in A$ such that $\mu_A(h)$ is finite,

$$\mu_A(h) = \sum_p \ \lambda_p(Ah) \ e_m(A/p)$$

where the sum ranges over all prime ideals p of A of depth $d-1=\dim A-1$,

$$0 \longrightarrow Af/Afg \longrightarrow A/Afg \longrightarrow A/Af \longrightarrow 0$$

is exact, $Af/Afg \simeq A/Ag$ as A-modules, $\lambda_p(Afg) = \lambda_p(Af) + \lambda_p(Ag)$, and the proposition follows.

REMARK. Let $A = k[x, y]_{(x,y)} = k[X, Y]_{(X,Y)}/(X^2, XY)$. By direct computation $\mu_A(y) = 3$ and $\mu_A(y^2) = 5$. Thus $\mu_A(fg)$ need not be $\mu_A(f) + \mu_A(g)$ if neither f nor g is regular and if both $\mu_A(f)$ and $\mu_A(g)$ are finite.

PROPOSITION 2. Let A be an entire local ring and suppose the order function v_A of A is a valuation. Then

$$\mu_A = e_m(A) \ v_A.$$

PROOF. G_mA is entire, and if f is a nonzero element of A, f is superficial of degree $v_A(f)$. Thus [7, Lemma 4, p. 286], $\mu_A(f) = e_m(A/Af) = e_m(A) \cdot v_A(f)$.

COROLLARY . If A is a regular local ring then μ_A is the order valuation.

REMARK. Let A be an entire local ring of dimension one and suppose the order function v_A of A is a valuation. Then G_mA is an entire graded ring over k = A/m of dimension one which must be the polynomial ring in one variable over k, $\dim_k m/m^2 = 1$, A is therefore a regular local ring, and $\mu_A = v_A$.

The following proposition gives a geometric definition of μ_A . The local ring A is said to be *affine* if it is the homomorphic image of a localization of a polynomial ring over a field.

PROPOSITION 3. Let A be an entire affine local ring which has an infinite residue field k = A/m. Then A is the homomorphic image of an affine regular local ring B. Let p be the kernel of this homomorphism of B onto A, which is local, and notice that B is equicharacteristic with residue field k. Let d be the dimension of A. Then for every regular element f of A,

$$\mu_{A}(f) = \min_{f_{1}, \dots, f_{d-1}} \{i(Z(B/p) \cdot Z(B/Bf_{1}) \cdot \dots \cdot Z(B/Bf_{d-1}) \cdot Z(B/Bf), m)\}$$

where the minimum is taken over all $f_1, \ldots, f_{d-1} \in A$ for which the intersection is proper. For the definition and notation of the right-hand side of the equation see [1] and [6, V-C].

REMARK. By applying Lemma 2, §2 to $\mu_A(f) = e_{(f,f_1,...,f_{d-1})}(A)$, by the additivity of Z(B/p) and the linearity of $i(\cdot,m)$, the hypothesis that A be entire may be dropped from Proposition 3.

REMARK. This proposition does not necessarily hold if the residue field is finite. For let k be the field of p^n elements, and let $A = k[X_1, X_2]_{(X_1, X_2)}$.

Letting μ' denote the formula of the right-hand side of the equality of the proposition, $\mu'(X_2(\Pi_{\alpha \in k}(X_1 - \alpha X_2))) = p^n + 2$, whereas $\mu_A(X_2(\Pi_{\alpha \in k}(X_1 - \alpha X_2))) = p^n + 1$.

Proof of Proposition 3.

$$\mu_A(f) = e_{(f_1, \dots, f_{d-1})}(A/Af)$$

for some $f_1, ..., f_{d-1} \in m$ [7, Theorem 22, p. 294]

$$= \min_{f_1, \dots, f_{d-1}} \{e_{(f_1, \dots, f_{d-1})}(A/Af)\}$$

where (f_1, \ldots, f_{d-1}) is an open ideal of A/Af [7, Lemma 2, p. 285]. The elements f_1, \ldots, f_{d-1} have representatives in B and in A, and consider f_1, \ldots, f_{d-1} to be in either B, A or A/Af.

Let M be the maximal ideal of B, let \hat{B} be the M-adic completion of B, and let $\hat{p} = \hat{B}p$. $\hat{A} = \hat{B}/\hat{p}$. $\hat{B} \simeq k[[X_1, \ldots, X_n]]$ for some n. Let (f_1, \ldots, f_{d-1}) be an open ideal of A/Af.

$$\begin{split} e_{(f_1, \dots, f_{d-1})}(A/Af) &= e_{(f_1, \dots, f_{d-1}, f)}(A) \\ ([4, p. 300] \text{ for } ((0):_A Af) &= (0)) \\ &= e_{(f_1, \dots, f_{d-1}, f)}(\hat{B}/\hat{p}) \\ &= e_{(f_1 \otimes 1, \dots, f_{d-1} \otimes 1, f \otimes 1)} \\ &\qquad \qquad ((\hat{B} \, \hat{\otimes}_k \, \hat{B}/\hat{p})/(X_1 \otimes 1 - 1 \otimes X_1, \dots, X_n \otimes 1 - 1 \otimes X_n)) \\ &= e_{(X_1 \otimes 1 - 1 \otimes X_1, \dots, X_n \otimes 1 - 1 \otimes X_n, f_1 \otimes 1, \dots, f_{d-1} \otimes 1, f \otimes 1)}(\hat{B} \, \hat{\otimes}_k \, \hat{B}/\hat{p}) \end{split}$$

[4, p. 300], for $X_1 \otimes 1 - 1 \otimes X_1, \ldots, X_n \otimes 1 - 1 \otimes X_n$ is a prime sequence in $\hat{B} \otimes_k \hat{B}/\hat{p}$ as will be shown below. As will also be shown below, $f_1 \otimes 1$, \ldots , $f_{d-1} \otimes 1$, $f \otimes 1$ is a prime sequence in $\hat{B} \otimes_k \hat{B}/\hat{p}$. The above equality may now be continued.

$$\begin{split} &e_{(f_1,\dots,f_{d-1})}(A/Af) \\ &= e_{(X_1 \otimes 1 - 1 \otimes X_1,\dots,X_n \otimes 1 - 1 \otimes X_n)}(\hat{B}/(f_1,\dots,f_{d-1},f) \, \hat{\otimes}_k \, \hat{B}/\hat{p}) \quad [4, p. 300] \\ &= \chi(B/(f_1,\dots,f_{d-1},f),B/p) \quad [6, p. V-12] \\ &= i(Z(B/p) \cdot Z(B/Bf_1) \cdot \cdot \cdot Z(B/Bf_{d-1}) \cdot Z(B/Bf), m) \quad [6, p. V-20] \, . \end{split}$$

It must be shown that $X_1 \otimes 1 - 1 \otimes X_1, \ldots, X_n \otimes 1 - 1 \otimes X_n$ is a prime sequence in

$$\hat{B} \, \hat{\otimes}_k \, \hat{A} \simeq (\cdots ((\hat{A}[[X_1]]) \, [[X_2]]) \cdots)[[X_n]].$$

By induction, it follows from the fact that $X_1 - \alpha$ is a regular element of $R[[X_1]]$ for any $\alpha \in R$ where R is a noetherian ring.

It must also be shown that $f \otimes 1, f_1 \otimes 1, \ldots, f_{d-1} \otimes 1$ is a prime sequence in $\hat{B} \otimes_k \hat{A}$. $(f, f_1, \ldots, f_{d-1})$ has height d in B, so f, f_1, \ldots, f_{d-1} is a prime sequence in B. Let R and S be two rings containing as a subring the field k, and let α be a regular element of R. $0 \to R \xrightarrow{m_{\alpha}} R$ is exact where m_{α} denotes multiplication by $\alpha \cdot S$ is k-flat, $0 \to R \otimes_k S \xrightarrow{m_{\alpha} \otimes_k S} R \otimes_k S$ is exact, and $\alpha \otimes 1$ is a regular element of $R \otimes_k S$. It follows immediately that $f \otimes 1, f_1 \otimes 1, \ldots, f_{d-1} \otimes 1$ is a prime sequence of $B \otimes_k A$. If R is a Zariski ring and if \hat{R} is the completion of R, then f_1, \ldots, f_d is a prime sequence in R if and only if f_1, \ldots, f_d is a prime sequence in \hat{R} [7, Chapter VIII, §5]. A and B are affine over k, so $B \otimes_k A$ is noetherian, and $B \otimes_k A$ is a Zariski ring with completion $\hat{B} \otimes_k \hat{A}$. Thus $f \otimes 1, f_1 \otimes 1, \ldots, f_{d-1} \otimes 1$ is a prime sequence in $\hat{B} \otimes_k \hat{A}$.

2. The behavior of μ_A under reduction of A and integral extension of A. Let A be a nonimbedded local ring (the associated prime ideals of (0) in A are all

minimal). Let IA be the integral closure of A contained in QA, the total quotient ring of A. The minimal (height zero) prime ideals of A, IA and QA are in a bijective correspondence. Let N be a minimal prime ideal of A. Then $\lambda_N(0) = \lambda_{(IA)N}(0) = \lambda_{(QA)N}(0)$, and $I(A/N) \cong IA/IN$ where IN = (IA)N. $IA \cong A'_1 \oplus \cdots \oplus A'_n$ where $I(A'_i) = A'_i$ and A'_i has a unique minimal prime ideal N'_i .

$$A'_1 \oplus \cdots \oplus A'_{i-1} \oplus N'_i \oplus A'_{i+1} \oplus \cdots \oplus A'_n = IN_i$$

for i = 1, ..., n are the minimal prime ideals of IA. Thus a maximal ideal of IA contains a unique minimal prime ideal.

LEMMA 1. Let A be a dimension one nonimbedded local ring with maximal ideal m. Let IA be the integral closure of A in its total quotient ring QA. There are only a finite number of prime ideals m_1, \ldots, m_s of IA lying over m, and the indices $[IA/m_i: A/m]$ are finite for $i = 1, \ldots, s$. Let $A_i = (IA)_{m_i}$. If f is an element of A,

$$l_A(A/Af) = \sum_{i=1,\dots,s} n_i \lambda_{N_i}(0) [IA/m_i: A/m] l_{A_i}(A_i/A_i f)$$

the n_i being positive integers depending only upon A/N where N is the nil radical of A.

If IA/IN is a noetherian A-module, then $n_i = 1$ for $i = 1, \ldots, s$. The n_i may be greater than one, for in Nagata's example [3, E 3.2, p. 206], s = 1 and $n_1 = p$.

PROOF. It may be assumed that f is a regular element of A, for otherwise both sides of the equality are infinite. Let B be a finite A-submodule of A, and let $A \in A$ be regular and such that $A \in A$.

$$\begin{split} l_A(B/Bf) &= l_A(Ba/Baf) = l_A(A/Aaf) - l_A(A/Ba) - l_A(Baf/Aaf) \\ &= l_A(A/Af) + l_A(A/Aa) - l_A(A/Ba) - l_A(Ba/Aa) \\ &= l_A(A/Af). \end{split}$$

By [3, Theorem 21.2, p. 70], or by the first part of the proof of [7, Theorem 24, p. 297],

$$l_A(A/Af) = \sum_{i=1,\dots,s_B} [B/p_i : A/m] l_B(B_{p_i}/B_{p_i}f)$$

where p_1, \ldots, p_{s_B} are the prime ideals of B lying over m. There are a finite number of prime ideals in IA lying over m, for $s_B \leq l_A(A/Af)$. Let m_1, \ldots, m_s be the maximal ideals of IA. Note that

$$l_A(\mathrm{dir}\, \lim_\iota M_\iota) \leq \max_\iota \{l_A(M_\iota)\},$$

 $IA/m_i = \text{dir lim}_B B/B \cap m_i \text{ and } [IA/m_i: A/m] \text{ is finite.}$

Let $\alpha_i \in IA$ be such that $\alpha_i \in m_i$ and $\alpha_i \notin \bigcup_{j \neq i} m_j$. Let $\beta_1, \ldots, \beta_t \in IA$ be such that

$$[A[\beta_1,\ldots,\beta_t]/(m_i\cap A[\beta_1,\ldots,\beta_t]):A/m]=[IA/m_i:A/m]$$

for $i=1,\ldots,s$. Let $A'=A[\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t]$. By the formula above, letting A be $A'_{A'\cap m_i}$, it can be assumed that s=1 and $[IA/m_i:A/m]=1$. Then for a finite extension $B\subset IA$ of A, $l_A(A/Af)=l_B(B/Bf)$. The nil radical N of A is now a prime ideal.

First assume that I(A/N) is a noetherian A/N-module. By a finite extension of A in IA it can be assumed that A/N is normal, and thus that A/N is a regular local ring of dimension one [3, Theorem 33.2, p. 115 and Theorem 21.4, p. 40]. Let $x \in m/N$ generate m/N in A/N. Let

$$(0) = N_0 \subset N_1 \subset \cdots \subset N_{t-1} = NA_N \subset N_t = A_N$$

be a composition series of A_N over A_N , and let $n_i = A \cap N_i$. n_i/n_{i-1} is a principal A/N-module: If $\alpha_1, \ldots, \alpha_q \in n_i/n_{i-1}$ are nonzero and generate n_i/n_{i-1} as an A or A/N-module, there are $v, v_j \in A \sim N$ such that $v_j\alpha_j = v\alpha_1$ for $j = 1, \ldots, q$ (for there is a bijective correspondence between the ideals of A_N and their contractions in A). Viewed as A/N-modules, $\alpha_j = u_j x^{t_j} \alpha_1$ where u_j is a unit in A/N and where t_j is an integer. Let $t_k = \min\{t_1, \ldots, t_q\}$. $n_i/n_{i-1} = A\alpha_k$. So there are $a_1, \ldots, a_t \in N$ with $n_i = (a_1, \ldots, a_i)$. For $i = 1, \ldots, t$,

$$0 \to \frac{n_i + Af}{n_{i-1} + Af} \to \frac{A}{n_{i-1} + Af} \to \frac{A}{n_i + Af} \to 0$$

is exact. Map $A \to (n_i + Af)/(n_{i-1} + Af)$ by $y \mapsto ya_i + (f, a_1, \ldots, a_{i-1})$. Suppose $ya_i \in (f, a_1, \ldots, a_{i-1})$. There are $c, c_1, \ldots, c_{i-1} \in A$ such that $cf = c_1a_1 + \cdots + c_{i-1}a_{i-1} - ya_i \cdot y \notin N$ and n_i is N-primary because it is the contraction of an A_N N-primary ideal, so $c \in (a_1, \ldots, a_i)$. Thus there is an element b of A such that $ya_i - ba_i f \in (a_1, \ldots, a_{i-1})$. $a_i \notin (a_1, \ldots, a_{i-1})$ which is N-primary, so $y - bf \in N$. Hence

$$(n_i + Af)/(n_{i-1} + Af) \simeq A/(N + Af),$$

and

$$l_A(A/Af) = \lambda_N(0) \ l_{A/N}(A/(N+Af)) = \lambda_N(0) \ l_{IA/IN}(IA/IA \cdot f).$$

Now drop the assumption that I(A/N) is a finite A/N-module. Let \hat{A} be the *m*-adic completion of A. $l_A(A/Af) = l_{\hat{A}}(\hat{A}/\hat{A}f)$. The pair A, m is a Zariski ring, so $(A/N)^{\hat{}} \simeq \hat{A}/\hat{N}$, \hat{A} and \hat{N} are unmixed [7, Chapter VIII, §4]. Letting M_j be a minimal prime ideal of \hat{A} , $I(\hat{A}/M_j)$ is a finite \hat{A}/M_j -module [3, Theorem 32.1, p. 112]. By the *finite case* above

$$l_{\hat{A}}(\hat{A}/\hat{A}f) = \sum_{i} \lambda_{M_{j}}(0) \ l_{\hat{A}/M_{j}}((\hat{A}/M_{j})/(\hat{A}/M_{j})f).$$

 $A \subset A_N \subset \hat{A}_{M_i}$ canonically. Let

$$(0) = N_0 \subset N_1 \subset \cdots \subset N_{t-1} = A_N N \subset N_t = A_N$$

be a composition series of A_N . $N_i \otimes_{A_N} \hat{A}_{M_j}$ can be refined into a composition series for A_{M_j} . Now $N_i/N_{i-1} \simeq A_N/A_NN$, this completion and localization are exact, so $N_i/N_{i-1} \otimes_{A_N} A_{M_j}$ are all isomorphic for $i=1,\ldots,t$ of length

$$\lambda_{M_{j}/\hat{N}}(0) = l_{(\hat{A}/\hat{N})_{M_{j}/\hat{N}}}((\hat{A}/\hat{N})_{M_{j}/\hat{N}}),$$

and $\lambda_{M_i}(0) = \lambda_N(0)\lambda_{M_i/\hat{N}}(0)$. Thus

$$l_{\widehat{A}}(\widehat{A}/\widehat{A}f) = \lambda_{N}(0)l_{\widehat{A}/\widehat{N}}((\widehat{A}/\widehat{N})/(\widehat{A}/\widehat{N})f),$$

and it follows that

$$l_A(A/Af) = \lambda_N(0) l_{A/N}(A/(N + Af)).$$

 $I(A/N) \simeq IA/IN$, and IA/IN is a regular local ring of dimension one [3, Theorem 33.2, p. 115 and Theorem 12.4, p. 40]. Let x be a generator of the maximal ideal m_1 of IA and let u be a unit in IA such that for some integer n, $f = ux^n$. By a finite extension of A it may be assumed that u and x are elements of A. To finish the proof, notice that $l_{IA}(IA/(IA)x) = 1$ and $IN \subset (IA)x$ so that

$$\frac{l_{A/N}((A/N)/(A/N)f)}{l_{IA}(IA/(IA)f)} = l_{A/N}((A/N)/(A/N)x).$$

Let $n_1 = l_{A/N}((A/N)/(A/N)x)$.

LEMMA 2. Let A be a local ring with maximal ideal m, let N_1, \ldots, N_n be the prime ideals of A of depth $d = \dim A$. For every regular element f of A

$$\mu_A(f) = \sum_{i=1,\dots,n} \lambda_{N_i}(0) \, \mu_{A/N_i}(f+N_i).$$

PROOF. If dim A=0, the formula holds trivially. Let p be a prime ideal of A of depth d-1 and containing f. Then $B=A_p$ is of dimension one and is nonimbedded, for f is a regular element. Note that if $N_i \subset p$, then $\lambda_{N_i}(0) = \lambda_{BN_i}(0)$. By Lemma 1, applied to B and to B/BN_i for $N_i \subset p$,

$$l_B(B/Bf) = \sum_{N_i \subseteq p} \lambda_{N_i}(0) l_{B/BN_i}((B/BN_i)/(B/BN_i)f),$$

and by [6, p. V-3],

$$\begin{split} \mu_{A}(f) &= \sum_{p} l_{p}(A/Af) \ e_{m}(A/p) \\ &= \sum_{p} \sum_{N_{i} \subset p} \lambda_{N_{i}}(0) \ l_{p/N_{i}}((A/N_{i})/(A/N_{i})f) e_{m}(A/p) \\ &= \sum_{i=1,...,n} \lambda_{N_{i}}(0) \ \mu_{A/N_{i}}(f+N_{i}). \end{split}$$

LEMMA 3. Let A be a dimension one local ring with maximal ideal m, let m_1, \ldots, m_s be the prime ideals of IA lying over m, and let $A_i = IA_{m_i}$ For every regular element f of A,

$$\mu_A(f) = \sum_{i=1,\dots,s} \lambda_{N_i}(0) n_i [IA/m_i : A/m] \mu_{A_i}(f)$$

for some positive integers n_1, \ldots, n_s where N_i is the minimal prime ideal of A_i .

This is a restatement of Lemma 1. (If A is imbedded, the only regular elements of A are the units, and the formula holds trivially.)

REMARK. Lemma 3 does not necessarily hold if the dimension of A is greater than one. Let

$$A = k[w, x, y, z]_{(w,x,y,z)} = k[W, X, Y, Z]_{(W,X,Y,Z)}/(X^2 - Z^3, XY - W^3)$$

where k is a field. By direct computation $\mu_A(x) = 9$ and $\mu_A(y) = 6$.

$$A \simeq k[ts, t^3, s^3, t^2]_{(ts, t^3, s^3, t^2)} \subset k[s, t]_{(s, t)}$$

where s and t are independent transcendentals over k, and $IA \simeq k[s, t]_{(s,t)}$. Thus $\mu_{IA}(x) = \mu_{IA}(y) = 3$. By the Corollary of Proposition 2, $\mu_{IA} = v$ where v is the order valuation of $k[s, t]_{(s,t)}$ having valuation ring $k(s/t)[t]_{(t)}$. $\mu_A = v + w$ where w is the valuation having valuation ring $k(t/s^2)[s]_{(s)}$. (See §4.)

3. The first neighborhood ring of A: a quadratic transform of A which is compatible with μ_A . Let G_mA be the associated graded ring of A with respect to m. Let $m = (x_1, \ldots, x_n)$. The natural homomorphisms

$$A[X_1,\ldots,X_n] \to k[X_1,\ldots,X_n] \to G_m A$$

(where k = A/m) will be used. Let A[X] denote $A[X_1, \ldots, X_n]$, and let k[X] denote $k[X_1, \ldots, X_n]$. I will denote the ideal (X_1, \ldots, X_n) of A[X], k[X], and G_nA .

A familiarity with Northcott's *The neighborhoods of a local ring* [5] is assumed. For the definition of the first neighborhood ring \Re of A, see [5, p. 361]. Let $\aleph_1, \ldots, \aleph_r$ be the height one prime ideals of \Re lying over m, and let p_i be the prime ideal of G_mA corresponding to \aleph_i [5, Propositions 1–4]. The preimage of p_i in k[X] will also be denoted by p_i . For the definition of a superficial element of A see [5, p. 362], [3, p. 72 and Theorem 30.1, p. 103], or [7, p. 285].

LEMMA 4. Let A be an entire local ring with maximal ideal m and an infinite residue field k. Let \Re be the first neighborhood ring of A, let \wp_1, \ldots, \wp_r be the height one prime ideals of \Re lying over m, let $\Re_i = \Re_{\wp_i}$, and let \wp_i be the prime ideal of G_mA corresponding to \wp_i . Then

$$\mu_A(f) = e_I(G_m A/p_1)\mu_{\Re_1}(f) + \cdots + e_I(G_m A/p_r)\mu_{\Re_r}(f)$$

for all $f \in A$.

PROOF. The equality is easily shown to hold for a superficial element of A. Let $f \in A$ be superficial of degree s. $\mu_A(f) = e_m(A/Af) = se_m(A)$ [7, Lemma 4, p. 286], and

$$\mu_{A}(f) = s(e_{I}(k[X]/p_{1})e_{p_{1}}(\Re_{1}/\Re_{1}m) + \cdots + e_{I}(k[X]/p_{r})e_{p_{r}}(\Re_{r}/\Re_{r}m))$$

[5, formula E, p. 370]. Let x be a superficial element of A of degree one. $f/x^s \in \Re_i$, $\Re_i m = \Re_i x$ for $i = 1, \ldots, r$, and

$$\mu_{A}(f) = s(e_{I}(k[X]/p_{1})\mu_{\Re_{1}}(x) + \cdots + e_{I}(k[X]/p_{r})\mu_{\Re_{r}}(x))$$

$$= e_{I}(k[X]/p_{1})\mu_{\Re_{1}}(f) + \cdots + e_{I}(k[X]/p_{r})\mu_{\Re_{r}}(f).$$

The proof of the equality in general will occupy the rest of this section. First let dim $A \ge 2$. The proof will proceed by fixing the element $f \in A$ and blowing up A to a one-dimensional ring B such that $\Re^1 = \Re_1 \cap \cdots \cap \Re_r$ is an integral extension of B and such that $G_{mB}(B/Bf)$ is nearly a linear section of $G_m(A/Af)$.

Let v_A be the order function of A with respect to m. Let x be a superficial element of A of degree one, let $m=(x_1,\ldots,x_n)$ and let Π be a form of degree one in $A[X_1,\ldots,X_n]$ with $x=\Pi(x_1,\ldots,x_n)$. Π will also denote its image modulo m in $k[X_1,\ldots,X_n]$. Consider the diagram,

$$A[X_1, \dots, X_n] \xrightarrow{\rho} k[X_1, \dots, X_n]$$

$$\downarrow \chi \qquad \qquad \downarrow \psi$$

$$A \xrightarrow{G_m A}$$

where $\sigma(g)=(g+m^vA^{(g)+1})/m^vA^{(g)+1}$, ψ is the canonical homomorphism and k=A/m, χ is the homomorphism with $\chi(X_i)=x_i$ and $\chi|_A=\mathrm{id}_A$, and $\rho(F)$ is the leading form modulo m of F. $\sigma(Af)$ is an ideal of G_mA , but σ need not be a homomorphism. Let $\tau Af=\psi^{-1}\sigma(Af)$, let $\omega Af=\chi^{-1}(Af)=(X_1-x_1,\ldots,X_n-x_n,f)$, and let σAf denote $\sigma(Af)$.

 $\rho(\omega Af)=\tau Af$. First notice that if $E\in\omega Af$ and $\deg E=v_A(\chi E)=s$ then $\psi\rho E=\psi(E+m[X]+I^{s+1})=E(x_1,\ldots,x_n)+m^{s+1}$. Secondly notice that $\psi^{-1}(0)=\tau A0\subset\rho(\omega Af)$. If $E\in\omega Af$ and if $\psi\rho E=0$ then $\rho E\in\psi^{-1}(0)\subset$

 $\rho(\omega Af)$. If $E \in \omega Af$ and if $\psi \rho E \neq 0$ then $\deg E = v_A(\chi E)$, $\psi \rho E = \sigma \chi E$, and $\rho E \in \tau AF$. Hence $\rho(\omega Af) \subset \tau Af$. Let $e \in Af$. Let $E \in \omega Af$ be such that $\deg E = v_A(e)$ and $\chi E = e$. Then $\sigma e = \psi \rho E$, $\rho E \in \psi^{-1}(\sigma e)$, and $\tau Af \subset \rho(\omega Af)$.

Let p be an isolated prime ideal of $\tau A0$. Then depth $p = \dim A$ – height $p \ge 2$ and depth $(p, \Pi) \ge 1$.

Choose Θ to be a form of degree one in $A[X] = A[X_1, \ldots, X_n]$ such that $y = \Theta(x_i)$ is a superficial element of A and a superficial element of A/Af, such that Θ is contained in no isolated prime ideal of (p, Π) for any isolated prime ideal p of $\tau A0$, and such that y is contained in no associated prime ideal of Ax other than possibly m. Each condition is viewed as a condition on form ideals in k[X]. Let Θ also denote its image modulo m in k[X].

Let u=y/x. Let P be the kernel of the canonical homomorphism of A[U] onto A[u] where A[U] is the polynomial ring in one variable and U maps to u. $P\cap A=(0)$, and it follows that P is of height one in A[U]. Letting \mathcal{D}_A denote the set of prime ideals of A which occur as an imbedded prime ideal of a proper principal ideal of A (see $[2,\S 6]$), $Q\in \mathcal{D}_{A[U]}$ if and only if $Q\cap A\in \mathcal{D}_A$ and $Q=(Q\cap A)\cdot A[U]$. y-xU is prime in A[U] if and only if x,y form a prime sequence in A, but this is the case if and only if $m\notin \mathcal{D}_A$. If $m\notin \mathcal{D}_A$ then P=(y-xU), and $P\subset m[U]$. If $m\in \mathcal{D}_A$ then P and m[U] are the associated prime ideals of (y-xU). For if Q is an associated prime ideal of (y-xU) of height greater than one then $x,y\in Q\cap A$ and Q=m[U]. If Q is of height one, either $Q\cap A=q\neq (0)$, in which case Q=q[U] and $x,y\in q$ which contradicts the choice of y, or $Q\cap A=(0)$ in which case $Q=(QA)[U]\cdot (y-xU)=P$. It again follows that $P\subset m[U]$. So $A[u]/m[u]\cong k[U]$, and $\overline{u}=u+m\cdot A[u]$ is transcendental over k.

Let $S = A[u] \sim mA[u]$ and let $B = S^{-1}A[u]$. $B/mB \simeq k(\overline{u})$ a simple transcendental extension of k. Dim $A[U] = \dim A + 1$, the kernel P of the homomorphism $A[U] \longrightarrow A[u]$ is height one, m[U] is of height equal to dim A, and dim $B = \dim A - 1$. Consider $G_{mB}B$ and the commutative diagram

$$A[X_1, \dots, X_n] \xrightarrow{\rho} B[X_1, \dots, X_n]$$

$$\downarrow \rho \qquad \qquad \downarrow \rho$$

$$k[X_1, \dots, X_n] \xrightarrow{\psi} k(\bar{u}) [X_1, \dots, X_n]$$

$$\downarrow \psi \qquad \qquad \downarrow \psi$$

$$G_m A \xrightarrow{\phi} G_{mB} B$$

where ϕ is the canonical homomorphism induced by the inclusion $A \subset B$. Define σ , τ and ω for B as was done for A. Notice that $\omega Af \subset \omega Bf$, so $\tau Af \subset \tau Bf$. $\Theta - u\Pi \in \omega Bf$. Let q be an associated prime ideal of τAf which is not $I = (X_1, \ldots, X_n)$. If $\Theta - \overline{u}\Pi \in k(\overline{u}) \cdot q$, then $\Theta - \overline{u}\Pi \in k[\overline{u}] \cdot q$ and $\Theta \in q$, which is

a contradiction to the superficiality of y. Therefore $\Theta - \overline{u}\Pi \notin k(\overline{u})q$, and $\Theta - \overline{u}\Pi$ is superficial as an element of $k(\overline{u})[X]/k(\overline{u}) \cdot \tau Af$.

Now $\mu_A(f) = e_I(k[X]/\tau Af)$ and $\mu_B(f) = e_I(k(\overline{u})[X]/\tau Bf)$. These modules are homogeneous and their lengths over k[X] or $k(\overline{u})[X]$ are their dimensions over k or $k(\overline{u})$. Thus $\mu_A(f) = e_I(k(\overline{u})[X]/k(\overline{u}) \cdot \tau Af)$. By Lemmas 3 and 4 of [7, pp. 285–286], if dim A > 2,

$$e_I(k(\overline{u})[X]/k(\overline{u}) \cdot \tau Af) = e_I(k(\overline{u})[X]/(\tau Af, \Theta - \overline{u}\Pi)),$$

and if dim A = 2,

$$e_{I}(k(\overline{u})[X]/k(\overline{u}) \cdot \tau Af) = e_{I}(k(\overline{u})[X]/(\tau Af, \Theta - \overline{u}\Pi))$$
$$-l_{k(\overline{u})[X]}(I^{c} + ((I^{n}, \tau Af): \Theta - \overline{u}\Pi)/(I^{c}, \tau Af))$$

for all large enough n and c with n > c. Because $\Theta - \overline{u}\Pi$ is contained in no associated prime ideal of $k(\overline{u}) \cdot \tau Af$ other than possibly I, the homogeneous parts of like degree of $k(\overline{u}) \cdot \tau Af$ and of $(k(\overline{u}) \cdot \tau Af : \Theta - \overline{u}\Pi)$ are equal for sufficiently large degree. So for large enough n and c, over $k(\overline{u})$

$$(I^c + ((I^n, \tau A f): \Theta - \overline{u} \Pi)/(I^c, \tau A f)) \simeq (k(\overline{u}) \cdot \tau A f: \Theta - \overline{u} \Pi)/k(\overline{u}) \cdot \tau A f,$$

and for dim A = 2,

$$e_{I}(k(\overline{u})[X]/k(\overline{u}) \cdot \tau Af) = e_{I}(k(\overline{u})[X]/(\tau Af, \Theta - \overline{u}\Pi))$$
$$- \dim_{k(\overline{u})}(k(\overline{u}) \cdot \tau Af: \Theta - \overline{u}\Pi)/k(\overline{u}) \cdot \tau Af.$$

Let

$$\alpha = \dim_{k(\bar{u})} \tau B f / (\tau A f, \Theta - \bar{u} \Pi)$$

and

$$\beta = \dim_{k(\overline{u})}(k(\overline{u}) \cdot \tau A f : \Theta - \overline{u} \Pi)/k(\overline{u}) \cdot \tau A f.$$

It is to be shown that $\alpha = \beta$. Then α is finite, for β is finite by the superficiality of $\Theta - \overline{u}\Pi$, and it follows that if dim A > 2, $\mu_A(f) = \mu_B(f)$. If dim A = 2 it follows from $\alpha = \beta$ that $\mu_A(f) = \mu_B(f)$.

If $\mathfrak U$ is a set of polynomials in X_1,\ldots,X_n , let $\mathfrak U_{(d)}$ be the set of all elements of $\mathfrak U$ which have no nonzero homogeneous component of degree strictly less than d, and let $\mathfrak U_d$ be the set of all homogeneous elements of $\mathfrak U$ of degree d.

Let $S = A[U] \sim m[U]$, and let A(U) denote $S^{-1}A[U]$. Let $\tau(P, f) = \rho(P, \omega A(U)f)$ and $\tau(\Theta - U\Pi, f) = \rho(\Theta - U\Pi, \omega A(U)f)$. Consider

$$A(U)[X] \xrightarrow{\rho} k(U)[X]$$

$$\downarrow \psi \qquad \qquad \downarrow \overline{\psi}$$

$$B[X] \xrightarrow{\rho} k(\overline{u})[X]$$

where $\rho(\alpha)$ is the leading form in X_1, \ldots, X_n of α modulo mA(U)[X] or mB[X], where $\psi(U) = u$ and $\psi|_{A[X]} = \mathrm{id}_{A[X]}$, and where $\overline{\psi}(U) = \overline{u}$ and $\overline{\psi}|_{k[X]} = \mathrm{id}_{k[X]}$. Because $P \subset (P, \omega A(U)f)$,

$$\overline{\psi}\tau(P, f) = \rho\psi(P, \omega A(U)f) = \tau Bf.$$

Note that $\overline{\psi}: k(U)[X] \longrightarrow k(\overline{u})[X]$ is an isomorphism over the isomorphism $k(U) \simeq k(\overline{u})$ induced by $\overline{\psi}$. Let

$$\gamma = \dim_{k(U)} \tau(P, f) / \tau(\Theta - U\Pi, f) = \dim_{k(\bar{u})} \tau Bf / \overline{\psi} \lambda(\Theta - U\Pi, f).$$

Then

$$\dim_{k(U)}\tau(f,\Theta-U\Pi)/(\tau Af,\Theta-U\Pi)=\alpha-\gamma.$$

Let H be $\rho((\omega A(U)f)^{\hat{}}: A(U)[[X]] \Theta - U\Pi)$ where $\hat{}$ denotes the *I*-adic completion. Let Q be an associated prime ideal of $\omega A(U)f$. $(X_1 - x_1, \ldots, X_n - x_n) \subset Q$, so $Q \subset (mA(U), I)$. $A(U)[X]_{(mA(U),I)}$ with the *I*-adic topology is a Zariski ring with completion A(U)[[X]]. Hence

$$((\omega A(U)f)^{\hat{}}:_{A(U)[[X]]}\Theta-U\Pi)=(\omega A(U)f:_{A(U)[X]}\Theta-U\Pi)^{\hat{}}$$

[7, Corollary 4, p. 266], and $H = p(\omega A(U)f : \Theta - U\Pi)$. So $\overline{\psi}H \subset (k(\overline{u}) \cdot \tau Af : \Theta - U\Pi)$. Let

$$\delta = \dim_{k(U)} H/k(U) \cdot \tau Af.$$

Then

$$\dim_{k(U)}(k(U) \cdot \tau A f \colon \Theta - U \Pi)/H = \beta - \delta.$$

It is to be first shown that $\alpha - \gamma = \beta - \delta$.

Let $M \in A(U)[X_1, \ldots, X_n]$ be homogeneous of degree d such that $M+mA(U)[X] \in \tau(\Theta-U\Pi, f)$. The following four assertions follow easily from the fact that $x_i - X_i \in \omega A(U)f$. There is an integer $h \leq d-1$ and forms $H_i \in A(U)[X]$ of degree $i=h,\ldots,d-1$ such that

$$(\Theta - U\Pi)(H_h + \cdots + H_{d-1}) + M \in \omega A(U)f + A(U)[X]_{(d+1)}.$$

If $M - M' \in mA(U)[X]_d$, then

$$(\Theta - U\Pi)(H_h + \cdots + H_{d-1}) + M' \in \omega A(U)f + A(U)[X]_{(d+1)}.$$

If $H_h - H_h' \in mA(U)[X]_h$, there are forms $H_i' \in A(U)[X]$ for $i = h + 1, \ldots, d-1$ such that

$$(\Theta - U \Pi)(H'_h + \cdots + H'_{d-1}) + M \in \omega A(U)f + A(U)[X]_{(d+1)}.$$

If
$$F \in A(U)[X]_d$$
 and if $F + mA(U)[X] \in k[X] \cdot \tau Af$, then

$$(\Theta - U \Pi)(H_h + \cdots + H_{d-1}) + (M + F) \in \omega A(U)[X] + A(U)[X]_{(d+1)}$$

Note that $H_h + mA(U)[X] \in (k(U) \cdot \tau Af : \Theta - U\Pi)$. Let $h(M) < \deg M$ be the maximal degree of all such H_h as above. Let H(M) be the set of all such H_h as above with h = h(M). $M + mA(U)[X] \in (\tau Af, \Theta - U\Pi)$ if and only if $h(M) = \deg M - 1$ which is true if and only if $H_{h(M)} \subset H(M)$ (which in this case is $A(U)[X]_{h(M)}$). If $b \in A(U) \sim mA(U)$, bH(M) = H(bM). If $H \in H(M)$ then

$$(H + mA(U)[X]_{h(M)}) + \mathcal{H}_{h(M)} \subset H(M)/mA(U)[X]_{h(M)},$$

and H(M) will be considered as a subset of $(k(U) \cdot \tau Af : \Theta - U\Pi)/II$.

A k(U)-linear injection of $\tau(f, \Theta - U\Pi)/(\tau Af, \Theta - U\Pi)$ into $(k(U) \cdot \tau Af : \Theta - U\Pi)/H$ is to be defined. Let $M_1, \ldots, M_a \in A(U)[X]$ be forms such that their residues modulo mA(U)[X] are in $\tau(f, \Theta - U\Pi)$, such that their residues in $\tau(f, \Theta - U\Pi)/(\tau Af, \Theta - U\Pi)$ are linearly independent over k(U), such that $h(M_i) \leq h(M_{i+1})$ and such that if $h(M_i) = h(M_{i+1})$ then $\deg M_i \geq \deg M_{i+1}$. Choose $\eta_i \in H(M_i)$. Suppose $\eta_i, \ldots, \eta_{t-1}$ are linearly independent over k(U), and suppose $\eta_t = \overline{\alpha}_1 \eta_1 + \cdots + \overline{\alpha}_{t-1} \eta_{t-1}$ where $\alpha_i \in A(U)$. The $\overline{\alpha}_i$ are nonzero only for those M_i with $h(M_i) = h(M_t)$. $h(M_t) = h(M_{t-1})$, for $\eta_t \neq 0$. Let M_s, \ldots, M_{t-1} be exactly those M_i with i < t, $h(M_i) = h(M_t)$ and $\deg M_i = \deg M_t$. Then $h(M_t - \alpha_s M_s - \cdots - \alpha_{t-1} M_{t-1}) > h(M_t)$, so replace M_t by $M_t - \alpha_s M_s - \cdots - \alpha_{t-1} M_{t-1}$, choose a new η_t , and reorder M_t, \ldots, M_a . With a finite number of repetitions of the above process η_1, \ldots, η_t will be linearly independent, for at worst $h(M_t)$ will eventually be greater than $h(M_{t-1})$, and linear independence will follow. Thus $a \leq \beta - \delta$, and $\alpha - \gamma \leq \beta - \delta$.

A construction analogous to the above is used to derive the opposite inequality. Let $H \in A(U)[X]_d$ with $H + mA(U)[X] \in (k(U) \cdot \tau Af : \Theta - U\Pi)$. Let m(H) be the maximal integer m such that there exists a form M of degree m and forms H_i of degree $i = d + 1, \ldots, m - 1$ such that

 $(\Theta - U\Pi)(H + H_{d+1} + \cdots + H_{m-1}) + M \in \omega A(U)f + A(U)[X]_{(m+1)}$ and $M + mA(U)[X] \notin (\tau Af, \Theta - u\Pi)$. If such a maximum does not exist then $H + mA(U)[X] \in H$, and if $H + mA(U)[X] \notin H$, then $m(H) \ge \deg H + 1$. Let M(H) be the set of all such M of degree m(H). M(bH) = bM(H) for $b \in A(U) \sim mA(U)$. If $M \in M(H)$ then $M + mA(U)[X] \subset M(H)$,

$$M + mA(U)[X]_{m(H)} + (\tau Af, \Theta - U\Pi)_{m(H)} \subset M(H)/mA(U)[X]_{m(H)}$$

and $M + mA(U)[X]_{m(H)} \in \tau(f, \Theta - U\Pi)$. M(H) will be considered as a subset of $\tau(f, \Theta - U\Pi)/(\tau Af, \Theta - U\Pi)$.

Let $H_1, \ldots, H_{\beta-\delta}$ be forms in mA(U)[X] such that their residues modulo mA(U)[X] are in $(k(U) \cdot \tau Af : \Theta - U\Pi)$, such that their residues form a k(U)-basis for $(k(U) \cdot \tau Af : \Theta - U\Pi)/H$, $m(H_i) \leq m(H_{i+1})$ and such that if $m(H_i) =$

 $m(H_{t+1})$ then $\deg H_i \geqslant \deg H_{t+1}$. Choose $\mu_i \in M(H_i)$. Suppose μ_1, \ldots, μ_{t-1} are linearly independent over k(U) and $\mu_t = \overline{\alpha}_1 \mu_1 + \cdots + \overline{\alpha}_{t-1} \mu_{t-1}$ where $\alpha_i \in A(U)$. $\overline{\alpha}_i$ is nonzero only if $m(H_i) = m(H_t)$, $m(H_{t-1}) = m(H_t)$ for $\mu_t \neq 0$, and let H_s, \ldots, H_{t-1} be those H_i with i < t, $m(H_i) = m(H_t)$ and $\deg H_i = \deg H_t$. Then $m(H_t - \alpha_s H_s - \cdots - \alpha_{t-1} H_{t-1}) > m(H_t)$. Replace H_t by $H_t - \alpha_s H_s - \cdots - \alpha_{t-1} H_{t-1}$, choose μ_t anew, reorder $H_1, \ldots, H_{\beta-\delta}$, with a finite number of repetitions the injection is defined, and $\alpha - \gamma \geqslant \beta - \delta$.

Thus $\alpha - \gamma = \beta - \delta$. The final goal in the proof of $\alpha = \beta$ is to show that γ and δ are equal.

Let $\mathfrak{A} \subset \mathfrak{B}$ be two ideals of A(U). As either k(U) or A(U)-modules, $\tau \mathfrak{B}/\tau \mathfrak{A}$ $\simeq \sigma \mathfrak{B}/\sigma \mathfrak{A}$. Now

$$\sigma \mathfrak{B}/\sigma \mathfrak{A} \simeq \sum_{n>0} \bigoplus \frac{(m^n \cap \mathfrak{B} + m^{n+1}/m^{n+1})}{(m^n \cap \mathfrak{A} + m^{n+1}/m^{n+1})}$$
$$\simeq \sum_{n>0} \bigoplus \frac{(m^n \cap \mathfrak{B} + m^{n+1})}{(m^n \cap \mathfrak{A} + m^{n+1})} \simeq \sum_{n>0} \bigoplus \frac{m^n \cap \mathfrak{B}}{(m^n \cap \mathfrak{A} + m^{n+1} \cap \mathfrak{B})}$$

(for $(m^n \cap \mathcal{B}) \cap (m^n \cap \mathcal{U} + m^{n+1}) = m^n \cap \mathcal{U} + m^{n+1} \cap \mathcal{B}$). Hence, $l_{k(u)} \tau \mathcal{B} / \tau \mathcal{U} = l_{A(U)} \mathcal{B} / \mathcal{U}$.

$$\gamma = l_{A(U)}(P, f)/(y - xU, f),$$

and

$$\delta = l_{A(U)}(A(U)f: y - xU)/A(U)f.$$

Let $\psi \in (A(U)f : y - xU)$. $(\psi/f)(y - xU) \in A(U)$, $f(\psi/f)(y - xU) \in P$, $f \notin P$, so $(\psi/f)(y - xU) \in P$. Let $\xi_1(\psi) = (\psi/f)(y - xU)$. If $\psi \in A(U)f$ then $\xi_1(\psi) \in A(U)(y - xU)$. Hence

$$\xi_1: (A(U)f: y - xU)/A(U)f \longrightarrow (P, f)/(y - xU, f)$$

is a homomorphism. Let $\psi \in \text{Ker } \xi_1$, that is, let $(\psi/f)(y-xU)=af+b(y-xU)$ for some a and b in A(U). Then $(\psi-bf)(y-xU)=af^2$, and $\psi \in ((A(U)f^2: y-xU), f)$. If $\phi \in (A(U)f^2: y-xU)$, then $\phi(y-xU)=af^2$ for some $a \in A(U), \xi_1(\phi)=(\phi/f)(y-xU)=af$, and $\phi \in \text{Ker } \xi_1$. So

Ker
$$\xi_1 = (A(U)f^2: y - xU), f)/A(U)f$$
.

Now,

$$(A(U)f^{i}: y - xU)/(A(U)f^{i}: y - xU) \cap A(U)f$$

$$\simeq ((A(U)f^{i}: y - xU), f)/A(U)f,$$

and a homomorphism

$$\xi_i : (A(U)f^i : y - xU)/(A(U)f^i : y - xU) \cap A(U)f$$

$$\longrightarrow (\cdots (((P, f)/(y - xU, f))/\operatorname{Im} \xi_1)/ \dots)/\operatorname{Im} \xi_{i-1}$$

with

Ker
$$\xi_i = ((A(U)f^{i-1}: y - xU), f)/A(U)f$$

is to be defined inductively.

If $\psi \in (A(U)f^i: y - xU)$, let $\xi_i(\psi) = (\psi/f^i)(y - xU) \in P$. If $\psi \in (A(U)f^i: y - xU) \cap A(U)f$, then $\psi/f \in (A(U)f^{i-1}: y - xU)$, $\xi_{i-1}(\psi/f) = (\psi/f^i)(y - xU) = \xi_i(\psi)$, and $\xi_i(\psi) \in \text{Im } \xi_{i-1}$. Let $\psi \in \text{Ker } \xi_i$. Then

$$(\psi/f^i)(y-xU)=af+b(y-xU)$$

$$+(\psi_1/f)(y-xU)+\cdots+(\psi_{i-1}/f^{i-1})(y-xU)$$

where $\psi_i \in (A(U)f^j: y - xU)$ for $j = 1, \ldots, i - 1$, and

$$(\psi - bf^{i} - f^{i-1}\psi_{1} - \cdots - f\psi_{i-1})(y - xU) = af^{i+1},$$

so Ker $\xi_i \subset ((A(U)f^{i+1}: y-xU), f)/A(U)f$. If $\phi \in (A(U)f^{i+1}: y-xU)$ then $\xi_i(\phi) = (\phi/f^i)(y-xU) \in A(U)f$, and $\phi \in \text{Ker } \xi_i$. Thus

Ker
$$\xi_i = ((A(U)f^{i+1}: y - xU), f)/A(U)f$$
.

 $\bigcap_i A(U)f^i = (0)$, so $\bigcap_i (A(U)f^{i+1}: y - xU) = (0)$, and by [3, Theorem 30.1, p. 103], $\bigcap_i \operatorname{Ker} \xi_i \subset \bigcap_k (A(U)f + m^k) = A(U)f$. Or by [5, Theorem 1, p. 365], because y - xU is superficial of degree 1, $(m^{i+1}A(U): y - xU) = m^i$ for all sufficiently large i, so $\bigcap_i \operatorname{Ker} \xi_i \subset \bigcap_i (A(U)f + m^i) = A(U)f$. If $\phi \in P$ there is an integer s such that $f^s\phi \in A(U)(y - xU)$, for there is an integer s such that $P \cap m^s = A(U)(y - xU) \cap m^s$. Then $\xi_s(f^s\phi/(y - xU)) = \phi$.

Let

$$\mathfrak{U}_i = ((A(U)f^i: y - xU), f),$$

and let

$$\mathfrak{L}_{i} = (\{(\psi/f^{i})(y - xU)|\psi \in (A(U)f^{i}: y - xU)\}, f).$$

Then $\bigcap_i \mathfrak{A}_i = A(U)f$ and $\mathfrak{A}_t = A(U)f$ for some $t \ge 1$, for (A(U)f: y - xU)/A(U)f is of finite length. Hence

$$\mathfrak{U}_0 = (A(U)f \colon y - xU) \supset \mathfrak{U}_1 \supset \cdots \supset \mathfrak{U}_t = A(U)f$$

and

$$(y - xU, f) = \mathfrak{B}_0 \subset \mathfrak{B}_1 \subset \cdots \subset \mathfrak{B}_s = (P, f)$$

where $\mathfrak{U}_i/\mathfrak{U}_{i+1} \cong \mathfrak{B}_{i+1}/\mathfrak{B}_i$ as A(U)-modules. Thus $\gamma = \delta$.

The above construction is inductive to dimension one. Let $B_d = A$ and

 $B_{d-1}=B$ where d is again the dimension of A, let $\Theta_{d-1}=\Theta$, $y_{d-1}=y$, $u_{d-1}=u$ and $L_{d-1}=\Theta-U\Pi$. Π and $x=\Pi(x_i)$ remain fixed throughout the induction. Suppose B_{j+1} has been defined with the required properties. Let Θ_j be a form of degree one in A[X] such that $y_j=\Theta_j(x_i)$ is a superficial element of B_{j+1} and of $B_{j+1}/B_{j+1}f$, Θ_j is not contained in any associated prime ideal of $(p_i, L_{d-1}, \ldots, L_{j+1})$ other than possibly I nor contained in any isolated prime ideal of $(p_i, L_{d-1}, \ldots, L_{j+1}, \Pi)$ for any isolated prime ideal p_i of $\tau A0$, and such that y_j is contained in no associated prime ideal of $B_{j+1}x$ except possibly mB_{j+1} . The above arguments hold when A is replaced by B_{j+1} and B is replaced by $B_j=S^{-1}B_{j+1}[u_j]$ where $u_j=y_j/x$ and $S=B_{j+1}[u_j]\sim mB_{j+1}[u_j]$.

Let $B = B_1$. B is one dimensional, B is local with maximal ideal mB, and $\mu_A(f) = \mu_B(f)$.

Let \Re^1 be $T^{-1}\Re$ where $T = \Re \sim (\beta_1 \cup \cdots \cup \beta_r)$ and where β_1, \ldots, β_r are the height one prime ideals of \Re . For every $i = 1, \ldots, r$,

$$\Re^{1} \mathfrak{p}_{i} \cap A[u_{d-1}, \ldots, u_{1}] = m[u_{d-1}, \ldots, u_{1}].$$

For let $z \in A[u_{d-1}, \ldots, U_1] \cap \mathbb{R}^1 \mathfrak{p}$ where \mathfrak{p} denotes one of the \mathfrak{p}_i . Then $z \in A[u_{d-1}, \ldots, u_1] \cap \mathfrak{p}$. Let \mathfrak{p} be the prime ideal corresponding to \mathfrak{p} which is associated to $\tau A0$, and let $F(\Theta_{d-1}, \ldots, \Theta_1, \Pi)$ be a form in $\Theta_{d-1}, \ldots, \Theta_1$ and Π with coefficients in A such that

$$F(\Theta_{d-1}(x_i/x), \ldots, \Theta_1(x_i/x), \Pi(x_i/x)) = z.$$

 $A[u_{d-1},\ldots,u_1]\subset\Re$, so $z\in \beta$ and by the correspondence between β and β , $F(\Theta_{d-1},\ldots,\Theta_1,\Pi)+m[X]\in\beta$. Suppose F modulo m,\overline{F} , is nonzero. If \overline{F} were a power of Π , then $\Pi\in\beta$ which is a contradiction. So there is an integer j such that $d-1\geqslant j\geqslant 1,\overline{F}\in k[\Theta_{d-1},\ldots,\Theta_j,\Pi]$ and $\overline{F}\notin k[\Theta_{d-1},\ldots,\Theta_{j+1},\Pi]$. Then

$$\overline{F} = \overline{G}\Pi^e \bmod (\Theta_{d-1} - \Pi, \ldots, \Theta_{j+1} - \Pi) \subseteq (p, L_{d-1}, \ldots, L_{j+1}, \Pi)$$

for some form $\overline{G} \in k[\Theta_j, \Pi]$ which is not divisible by Π . Letting $s \ge 1$ be the degree of \overline{G} , $\Theta_j^s \in (p, L_{d-1}, \ldots, L_{j+1}, \Pi)$ which is a contradiction to the choice of Θ_j . Hence $\overline{F} = 0$, and $z \in m[u_{d-1}, \ldots, u_1]$.

B is a ring of fractions of $A[u_{d-1}, \ldots, u_1]$ with $m[u_{d-1}, \ldots, u_1] \subset mB \cap A[u_{d-1}, \ldots, u_1]$. mB is a prime ideal of height one of B, so mB \cap $A[u_{d-1}, \ldots, u_1]$ must be of height one also, and

$$mB \cap A[u_{d-1}, \ldots, u_1] = m[u_{d-1}, \ldots, u_1].$$

It follows that

$$B = A[u_{d-1}, \ldots, u_1]_{m[u_{d-1}, \cdots, u_1]},$$

and therefore $B \subset \mathbb{R}^1$.

 $\Re^1=\Re_1\cap\cdots\cap\Re_r$ is a finite integral extension of $B=B_1$. The proof is an adaptation of the proof of Theorem 10 [5, p. 371]. Let \wp_1,\ldots,\wp_r also denote the proper prime ideals $\Re^1\wp_1,\ldots,\Re^1\wp_r$ of \Re^1 , let m_i be integers such that $\wp_1^{m_1}\cdots\wp_r^{m_r}\subset\Re^1m$, and let $n=\wp_1^{m_1}\cdots\wp_r^{m_r}$. Then $m^s\subset(\Re^1m)^s$ and $(\Re^1m)^{st}\subset m^s$ where $t=\max\{m_1,\ldots,m_r\}$. Let \hat{B} be the mB-adic completion of B, and let \hat{R} be the \Re^1m -adic completion of \Re^1 . \hat{R} is a \hat{B} -module, \hat{R} is the m-adic completion of \Re^1 , $\bigcap_{n\geq 0}m^n=(0)$, and by [7, Corollary 2, p. 273], the mB-adic topology of B is induced by the m-adic topology of \Re^1 . It is clear that $\hat{R}/\hat{R}m=\Re^1/\Re^1m$.

 $B[x_1/x,\ldots,x_n/x]$ is of dimension one [3, Theorem 33.2, p. 115], and \Re^1 is a ring of quotients of $B[x_1/x,\ldots,x_n/x]$. $p_j\cap B[x_1/x,\ldots,x_n/x]$ for $j=1,\ldots,r$ are distinct proper prime ideals of $B[x_1/x,\ldots,x_n/x]$. Let p be a proper prime ideal of $B[x_1/x,\ldots,x_n/x]$. $B[x_1/x,\ldots,x_n/x]$ is a ring of fractions of $A[x_1/x,\ldots,x_n/x]$, so $p\cap A[x_1/x,\ldots,x_n/x]$ is a prime ideal of height one, therefore there is a prime ideal p of R such that R or R such that R or R is a prime ideal R or R such that R or R is a prime ideal R in R is a prime ideal R or R is a prime ideal R is a prime ideal R in R in R is a prime ideal R in R

Let θ_{ji} be the residue of x_i/x modulo β_j . $\Re^1/\beta_j = k(\overline{u}_1, \ldots, \overline{u}_{d-1})$ $[\theta_{j1}, \ldots, \theta_{jn}]$ is a field, and θ_{ji} are algebraic over $k(\overline{u}) = k(\overline{u}_1, \ldots, \overline{u}_{d-1})$. By multiplying together the m_j th power of a polynomial which modulo β_j is the algebraic relation of θ_{ii} over $k(\overline{u})$ for $j = 1, \ldots, r$, there is a relation

$$(x_i/x)^t + \alpha_{t-1}(x_i/x)^{t-1} + \cdots + \alpha_0 \in \Re^1 m$$

where $\alpha_0, \ldots, \alpha_{t-1} \in B$. Therefore $\Re^1/\Re^1 m$ is a finite B/mB module, and \Re is a finite \widehat{B} module [7, Corollary 2, p. 259]. So for every positive integer s there is a relation

$$(x_i/x)^s \in [\hat{B}(x_i/x)^{t-1} + \dots + \hat{B}(x_i/x) + \hat{B}] \cap B$$

= $B(x_i/x)^{t-1} + \dots + B(x_i/x) + B$

for the latter module is finitely generated over the Zariski ring B and is therefore closed. \Re^1 is thus finite integral over B.

It is to be shown that $[\Re^1/\mathfrak{p}_s:B/mB]=e_I(k[X]/\mathfrak{p}_s)$. From the choice of Θ_i it follows that L_i is a superficial element of

$$k(\overline{u}_{d-1},\ldots,\overline{u}_{i})[X]/(p_{s},L_{d-1},\ldots,L_{i+1}),$$

for \overline{u}_j is transcendental over $k(\overline{u}_{d-1}, \ldots, \overline{u}_{j+1})$. The dimensions are greater than one, so

$$e_I(k[X]/p_s) = e_I(k(\overline{u})[X]/(p_s, L_{d-1}, \ldots, L_1)),$$

where $k(\overline{u})$ now denotes $k(\overline{u}_{d-1}, \ldots, \overline{u}_1)$. Let $M_k(X) \in A[X]$ for k = 1, ..., t be forms of degree d_k such that the residues of $M_1(x_i/x), \ldots, M_t(x_i/x)$ modulo β_s form a basis of \Re^1/β_s over $k(\overline{u}) = B/mB$. If G is a form in A[X] of degree $g \ge \max\{d_1, \ldots, d_t\}$, then

$$G(\theta_{si}) = \sum_{k=1,\dots,t} \alpha_k (\Pi(\theta_{si}))^{g-d_k} M_k(\theta_{si})$$

for some $\alpha_1, \ldots, \alpha_t \in k(\overline{u})$, for $\Pi(\theta_{si}) = 1$. Letting

$$0 \to K \to k(\bar{u})[X_1, \ldots, X_n] \to k(\bar{u})[\theta_{s1}, \ldots, \theta_{sn}] \to 0$$

be the exact where $X_i \to \theta_{si}$, $k(\overline{u})[X]_g/K_g$ is of dimension t over $k(\overline{u})$ for $g \ge \max\{d_1,\ldots,d_t\}$. $K \supset (p_s,L_{d-1},\ldots,L_1)$ by the correspondence between p_s and p_s . Let $G \in K_g$. There is a unit β in $k(\overline{u})$ such that $\beta G \in k[\overline{u}][X]_g$, and there are $F_j \in k[\overline{u}][X]$ for $j = 1,\ldots,d-1$ such that

$$E' = \prod^{c} \beta G = \sum_{j=1,\dots,d-1} (\Theta_j - \overline{u_j} \Pi) F_j \in k[X]_{g+c}$$

where c is the degree of u in βG . Let $E \in A[X]_{g+c}$ be a representative of E'. $E(x_i|x) \in \beta_s$, so $E' \in \beta_s$. Thus $\Pi^c G \in (\beta_s, L_{d-1}, \ldots, L_1)$. Inductively Π is contained in no minimal prime ideal of $(\beta_s, L_{d-1}, \ldots, L_j)$. For let P be such a minimal prime ideal and suppose $\Pi \in P$. Then $\Theta_j \in P$, and inductively by dimension, P is a minimal prime ideal of $(\beta_s, L_{d-1}, \ldots, L_{j+1}, \Pi)$ which is a contradiction to the choice of Θ_j . $(\beta_s, L_d, \ldots, L_1)$ being of dimension one, G is contained in every primary component of $(\beta_s, L_d, \ldots, L_1)$ except perhaps the primary component belonging to I, $K_g = (\beta_s, L_d, \ldots, L_1)_g$ for all large enough values of g, and by comparison of the Hilbert polynomials, $t = e_I(k[X]/\beta_s)$.

Apply the first part of the proof of Lemma 1 to \Re^1 over $B=B_1$, and obtain

$$\mu_A(f) = \mu_B(f) = \sum_{i=1,\dots,r} e_I(k[X]/p_i) \mu_{\Re_i}(f).$$

4. The valuation formula. Let A be a local ring with maximal ideal m. For a definition of a valuation of A, finite on A and centered at a prime ideal of A, see $[2, \S 1]$. By the additivity formula $\mu_A(f) = \Sigma_p \lambda_p(f) e_m(A/p)$ where the sum ranges over all prime ideals p of A which are of depth equal to the dimension of A. Assume that A is nonimbedded. Then the prime ideals p are all of height one, but they do not necessarily include all the prime ideals of height one. Then also $\lambda_p(Af)$ is a finite sum of finite rank one discrete valuations centered at p.

As an example, let A be an entire factorial ring of dimension greater than

one. Let $\{v_t\}_{t\in I}$ be the set of prime divisors of type one of A, and let p_t be a prime element of A with $v_t(p_t)=1$. Let w_1 and w_2 be two distinct prime divisors of A centered at m, let $a_t=w_1(p_t)$ and $b_t=w_2(p_t)$, and then $w_1=\sum_t a_t v_t$ and $w_2=\sum_t b_t v_t$. Let $c_t=\min\{a_t,b_t\}$. Then $\sum_t c_t v_t \geqslant w_1$, $\sum_t c_t v_t \neq w_1$, and $\sum_t c_t v_t$ is not a sum of valuations centered at m.

THEOREM. Let A be a local ring with maximal ideal m. There are integral valued valuations v_1, \ldots, v_s finite on A centered at m, and there are positive integers n_1, \ldots, n_s such that for every regular element f of A,

$$\mu_A(f) = n_1 v_1(f) + \cdots + n_s v_s(f).$$

If A is nonimbedded if $\mu_A(f) = n_1 v_1(f) + \cdots + n_s v_s(f)$ for all regular elements f of A, if the valuations v_1, \ldots, v_s are independent, and if the ideal generated by each $v_i(A)$ is all of the integers, then the valuations v_1, \ldots, v_s and the integers n_1, \ldots, n_s are unique. (If A is of dimension zero, μ_A is the trivial valuation: $\mu_A(f) = \infty$ if $f \in m$ and $\mu_A(f) = 0$ if $f \notin m$.)

The proof of the formula is now straightforward. By Lemma 2, A can be assumed to be entire. It may also be assumed that the residue field of A is infinite. In fact let A[x] be the polynomial ring in one variable over A, let $S = A[x] \sim mA[x]$, and let $A(x) = S^{-1}A[x]$, a local ring with maximal ideal $m \cdot A(x)$ and residue field A(x)/mA(x) = k(x) a simple transcendental extension of k = A/m. Then $\mu_A = \mu_{A(x)}$, for $A(x)/A(x)f \simeq (A/Af)(x)$ and letting B = A/Af

$$G_{mB(x)}B(x) = \sum_{n>0} \frac{m^n B(x)}{m^{n+1} B(x)} \simeq \sum_{n>0} \frac{m^n}{m^{n+1}} \bigotimes_A B(x)$$

$$\simeq \sum_{n>0} \frac{m^n + Af}{m^{n+1} + Af} \bigotimes_k k(x) \simeq (G_m B) \bigotimes_k k(x),$$

so the multiplicities of A/Af and of A(x)/A(x)f are equal. A valuation of A(x) restricted to A remains a valuation. By Lemma 4, A can be assumed to be one dimensional, by Lemma 3, A can be assumed to be normal, and apply the Corollary of Proposition 2 to obtain the formula.

The proof of the unicity uses a slight generalization of the approximation theorem. Define two valuations of A to be equivalent if there is an order isomorphism and the usual commutative diagram, and to be independent if they are not equivalent.

LEMMA. Let Q be a noetherian nonimbedded ring which is its own total quotient ring. Let v_1, \ldots, v_s be independent rank one valuations of Q, let $u_1, \ldots, u_s \in Q$ and let $\alpha_i \in v_i(A)$ be finite for $i = 1, \ldots, s$. There is an element u of Q such that $v_i(u - u_i) = \alpha_i$ for $i = 1, \ldots, s$.

PROOF. $Q = Q_1 \oplus \cdots \oplus Q_n$ where Q_j is a local ring of dimension zero, and let

$$\mathfrak{N}_i = Q_1 \oplus \cdots \oplus Q_{i-1} \oplus \mathfrak{N}_i \oplus Q_{i+1} \oplus \cdots \oplus Q_n$$

where \Re_j is the nil radical of Q_j . Let v_1, \ldots, v_t be all of the valuations v_1, \ldots, v_s which have $N_{v_i} = N_1$. Then v_1, \ldots, v_t are naturally independent valuations of $Q/N_1 = k_1$. By the approximation theorem for a field [7, Theorem 18, p. 45], there is an element u_1' of Q_1 with $v_i(u_1' - \operatorname{proj}_1 u_i) = \alpha_i$ for $i = 1, \ldots, t$. Repeat this for each N_j , obtaining $u_j' \in Q_j$ for $2 \le j \le n$. Let $u = u_1' \oplus \cdots \oplus u_n'$, and the proof of lemma is complete.

A is assumed to be nonimbedded. Suppose $n_1v_1+\cdots+n_sv_s\geq 0$ where v_1,\ldots,v_s are independent nontrivial rank one valuations finite on A. It is to be seen that $n_1\geq 0,\ldots,n_{s-1}\geq 0$ and $n_s\geq 0$. Let $u=f/g\in QA$ where f and g are elements of A, such that for some $i,v_i(u)>0$ and $v_j(u)=0$ for $j\neq i$. Then $v_i(f)>v_i(g),v_j(f)=v_j(g)$ for $j\neq i,n_i(v_i(f)-v_i(g))\geq 0$ and $n_i\geq 0$.

EXAMPLE. Let

$$A = C[x, y, z]_{(x,y,z)} = C[X, Y, Z]_{(X,Y,Z)}/(XY - Z^{3})$$

which is normal, analytically irreducible and Cohen-Macaulay. By direct computation $\mu_A(x) = \mu_A(y) = 3$, $\mu_A(x+y) = 2$, and μ_A is not a valuation. In fact, $\mu_A = v_x + v_y$ where $C(y/z)[z]_{(z)}$ and $C(x/z)[z]_{(z)}$ are the valuation rings of v_x and v_y respectively. Note that neither x nor y are superficial elements of A.

EXAMPLE. Let

$$A = k[w, x, y, z]_{(w,x,y,z)} = k[s^4, s^3t, st^3, t^4]_{(s^4,s^3t,st^3,t^4)} \subset k[s, t],$$

the polynomial ring in two variables over a field k. $IA = k[s^4, s^3t, s^2t^2, st^3, t^4]$, $\mathcal{D}_A = \{(s^4, s^3t, st^3, t^4)\}$ and A is not Cohen-Macaulay. A is the localization of a projective (graded) ring, and by Proposition 2, $\S1$, $\mu_A = e_m(A)v_A$ where v_A is the order valuation of A. By direct computation $\mu_A(x) = 4$, so $e_m(A) = 4$. Also $\Re = k(s/t)[t^4]_{\{t^4\}}$ which verifies the formula of the theorem for this example.

REFERENCES

- 1. J. Hornell, Intersection theory in an equicharacteristic regular local ring and the relative intersection theory, Proc. Amer. Math. Soc. 36 (1972), 8-12. MR 46#9040.
- 2. ———, Divisorial complete intersections, Pacific J. Math. 45 (1973), 217-227. MR 47 #6668.
- 3. M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 12, Interscience, New York, 1962. MR 27 #5790.
- 4. D. G. Northcott, Lessons on rings, modules and multiplicities, Cambridge, Univ. Press, London, 1968. MR 38 #144.

- 5. D. G. Northcott, The neighborhoods of a local ring, J. London Math. Soc. 30 (1955), 360-375. MR 17, 86.
- 6. J.-P. Serre, Algèbre locale. Multiplicités, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin and New York, 1965. MR 34 #1352.
- 7. O. Zariski and P. Samuel, Commutative algebra. Vol. II, University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66044

Current address: 2017 North 6th Street Terrace, Blue Springs, Missouri 64015